In most approaches to convert light into electricity, shadows are a bummer. Now though, researchers from the National University of Singapore (NUS) devised a shadow-effect energy generator (SEG) that scavenges electricity from the contrast between light and shadow.
“When the whole SEG cell is under illumination or in shadow, the amount of electricity generated is very low or none at all. When a part of the SEG cell is illuminated, a significant electrical output is detected. We also found that the optimum surface area for electricity generation is when half of the SEG cell is illuminated and the other half in shadow, as this gives enough area for charge generation and collection respectively,” says MUS physicist Andrew Wee in an NUS News article.
From the researchers’ technical paper in the journal Energy & Environmental Science:
Our SEG performs 200% better than that of commercial silicon solar cells under the effects of shadows. The harvested energy from our generator in the presence of shadows arising at a very low intensity (0.0025 sun) can drive an electronic watch (1.2 V). In addition, the SEG can serve as a self-powered sensor for monitoring moving objects by tracking the movement of shadows. With its cost-efficiency, simplicity and stability, our SEG offers a promising architecture to generate green energy from ambient conditions to power electronics, and as a part of a smart sensor systems, especially in buildings.