The last place you expect to meet a creationist is at the annual American Geophysical Union conference. I don’t know how I got so lucky.
Yesterday morning, I wandered through the posters presented at the event, with a thought to translating their scientific jargon into something interesting to read. Since my background is biological, I thought that discipline would be the obvious place to start—in particular, something about microbes doing interesting things under the surface of the Earth.
A title caught my eye. It was one of the first posters in the aisle, so prominent to the casual passerby:
A COMPARISON OF δ13C & pMC VALUES for TEN CRETACEOUS-JURASSIC DINOSAUR BONES from TEXAS to ALASKA USA, CHINA AND EUROPE WITH THAT OF COAL AND DIAMONDS PRESENTED IN THE 2003 AGU MEETING
Dinosaur bones and diamonds! My brain, attracted to both old and shiny objects, sent me in closer to investigate. As I was trying to interpret the densely-packed board of letters, numbers, and figures printed in incredibly tiny print, I was approached by a slight, elderly man in glasses. A name badge declaring him to be Hugh Miller, the first author on the poster.
He asked if I had any questions. I asked if he could just give me a quick summary of the work. He talked about performing mass spectrometry on samples of various dinosaur bones that produced age estimates ranging from 15,000 to 50,000 years. My spidey-sense tingled. I peered over his shoulder, searching for bullet points to figure out what was going on here.
That’s when I read it: “humans, neanderthals, and dinosaurs existed together.”
The poster was challenging radiocarbon dating using Carbon-14 (C-14) isotopes. It suggested that their data, comparing coal, diamond, wood, and dinosaur bones, were sufficient to throw all of geology into question. Namely, that based on their data, the age estimate of the dinosaurs was off by some 2000x.
Moreover, humanity must be increasingly concerned about asteroid strikes to the Earth, because that age estimate error would influence our estimate of the size of the whole universe (since we look at the size of the universe through the lens of time), which would mean that everything in our solar system is more densely packed. Hence, we are more likely to be hit by asteroids because they are so much closer to us than thought.
This makes about as much sense as the Indiana Jones movie with ancient alien archaeologists.
I don’t know if Hugh saw the quizzical look in my eyes, but when he was interrupted by someone asking for something, I quickly backed away.
Now, here’s the thing about Carbon-14 dating. This isotope has a very short half-life (the time necessary for the element to reduce in mass by half) of only 5730 years. Since it decays so quickly, it is useless for dating objects more than about 40-50,000 years old. The background levels of C-14 radiation in the laboratory have to be compensated for.
According to the NCSE website:
“This radiation cannot be totally eliminated from the laboratory, so one could probably get a “radiocarbon” date of fifty thousand years from a pure carbon-free piece of tin.”
And, this is pretty much what the poster presented.
When looking at fossils preserved in sedimentary rock, the fossil itself can be dated, but often a technique called “bracketing” is used where the igneous rock on either side of the fossil is dated with radioactive isotopes that have half-lives on the order of millions of years. This give scientists a range of time in which the animal could have lived. The poster authors, Hugh included, were basing their attack on one technique in the geological toolkit, and disregarding all other evidence that would have undermined their conclusions.
How did this abstract get past the selection process? I have no idea, but I hope that people at the conference were able to see that it was not science. It was an example of belief masquerading as scientific inquiry.