The issue with arsenic

fig3

Arsenic. Hearing the word in America usually brings up black and white mental images of the film "Arsenic and Old Lace." Yet, it is not an old issue. People around the world are exposed to dangerous levels of arsenic in their water.

Speaking today at the American Geophysical Union, Lex van Green discussed the issue of arsenic in well water in the Asian sub-continent, primarily in Bangladesh and Bihar, India. His concern is that even though people are aware of the problem, very little is being done to address it.

People continue to drill new wells without determining their safety (safe levels are set at less than 10 micrograms per liter of water). Van Green's data, collected from 2012-13, show that 50% of people in the area assessed drink water containing arsenic at unsafe levels. However, 100% of people live near safe wells. Additionally, only about a third of people who become aware that their wells are contaminated switch to new wells by either drilling new wells or using their neighbor's wells.

The difference between a safe well and an arsenic contaminated well is depth. Sedimentation by ancient arsenic rich waters along river deltas left layers of arsenic containing soil near the surface of the Earth. To get past the arsenic to clean aquifers, one has only to drill deeper than 100 meters down. However, wells are expensive to drill, and the deeper the well, the more expensive it will be.

So, the problem in these areas where there is no infrastructure to deliver treated water to people boils down one of inequality. Only the wealthy are able to afford a deep enough well. And, although the government has initiated subsidy programs to help with the digging of wells, research suggests that the wells end up clustered within a small subset of villages where the inhabitants are wealthy and support the political party in power.

In response, he and a team of researchers have developed affordable field test kits that can be used by private individuals or organizations to test wells for their arsenic content. The test results can be localized using GPS and smartphones. One of his collaborators is using Formhub, a system for mobile data collection, to improve data collection itself, quality control, and dissemination of information to impacted areas and individuals.

It's already looking like technology will speed up the spread of awareness about arsenic levels in wells and the availability of tests. Van Green showed a couple of slides supporting this point with data collected in the past week that visually demonstrated that many more people are beginning to take advantage of the testing compared to the 2012-13 test period.

This project, while important in the developing world where many millions more people are affected, could also be useful within the United States and Canada. The USGS has collected data on arsenic in water, and based on that information it is estimated that more than 40 million people in the U.S. are drinking arsenic laden water, many at levels well above 10 micrograms/liter.

The test kits do contain strips laden with mercury bromide, so there are concerns about their use. No one wants a baby getting one of the little strips in their mouth. But, there is no reason to think that an affordable, at home solution to testing for arsenic shouldn't be implemented if safety concerns are properly addressed. The risk from ingesting arsenic is much more serious and pressing.

So, do you know how safe your well is? You should, and you can.