The good folks on the most-excellent BBC Radio/Open University statistical literacy programme More or Less decided to answer a year-old Reddit argument about how many Lego bricks can be vertically stacked before the bottom one collapses.
They got the OU's Dr Ian Johnston to stress-test a 2X2 Lego in a hydraulic testing machine, increasing the pressure to some 4,000 Newtons, at which point the brick basically melted. Based on this, they calculated the maximum weight a 2X2 brick could bear, and thus the maximum height of a Lego tower:
The average maximum force the bricks can stand is 4,240N. That's equivalent to a mass of 432kg (950lbs). If you divide that by the mass of a single brick, which is 1.152g, then you get the grand total of bricks a single piece of Lego could support: 375,000.
So, 375,000 bricks towering 3.5km (2.17 miles) high is what it would take to break a Lego brick.
"That's taller than the highest mountain in Spain. It's significantly higher than Mount Olympus [tallest mountain in Greece], and it's the typical height at which people ski in the Alps," Ian Johnston says.
"So if the Greek gods wanted to build a new temple on Mount Olympus, and Mount Olympus wasn't available, they could just – but no more – do it with Lego bricks. As long as they don't jump up and down too much."
How tall can a Lego tower get?
More or Less: Opinion polling, Kevin Pietersen, and stacking Lego 30 Nov 2012 [MP3]