“Stress Relief: Improving Structural Strength of 3-D Printable Objects,” a paper presented at SIGGRAPH 2012 from Purdue University’s Bedrich Benes demonstrated an automated system for predicting when 3D models would produce structural weaknesses if they were fed to 3D printers, and to automatically modify the models to make them more hardy.
Findings were detailed in a paper presented during the SIGGRAPH 2012 conference in August. Former Purdue doctoral student Ondrej Stava created the software application, which automatically strengthens objects either by increasing the thickness of key structural elements or by adding struts. The tool also uses a third option, reducing the stress on structural elements by hollowing out overweight elements.
“We not only make the objects structurally better, but we also make them much more inexpensive,” Mech said. “We have demonstrated a weight and cost savings of 80 percent.”
The new tool automatically identifies “grip positions” where a person is likely to grasp the object. A “lightweight structural analysis solver” analyzes the object using a mesh-based simulation. It requires less computing power than traditional finite-element modeling tools, which are used in high-precision work such as designing jet engine turbine blades.