BB pal Larry Smarr is director of the California Institute for Telecommunications and Information Technology and was director of the NCSA during the birth of Mosaic, the first popular Web browser. I have the opportunity to chat with Larry with some frequency as he’s on the advisory board of Institute for the Future where I’m a researcher. I’m always intrigued by Larry’s stories of his quantified self practices. For years, Larry has been examining his own body at a very high resolution by charting almost every bodily function he can measure. Beyond what Larry’s learned about himself, his sheer discipline bowls me over. The Atlantic’s Mark Bowden profiled Larry:
“Have you ever figured how information-rich your stool is?,” Larry asks me with a wide smile, his gray-green eyes intent behind rimless glasses. “There are about 100 billion bacteria per gram. Each bacterium has DNA whose length is typically one to 10 megabases—call it 1 million bytes of information. This means human stool has a data capacity of 100,000 terabytes of information stored per gram. That’s many orders of magnitude more information density than, say, in a chip in your smartphone or your personal computer. So your stool is far more interesting than a computer.”
At 63, he is engaged in a computer-aided study of the human body—specifically, his body. It’s the start of a process that he believes will help lead, within 10 years, to the development of “a distributed planetary computer of enormous power,” one that is composed of a billion processors and will enable scientists to create, among many other things, a working computational model of your body. Your particular body, mind you, not just some generalized atlas of the human frame, but a working model of your unique corpus, grounded in your own genome, and—using data collected by nano sensors and transmitted by smartphone—refreshed continually with measurements from your body’s insides. This information stream will be collated with similar readings from millions of other similarly monitored bodies all over the planet. Mining this enormous database, software will produce detailed guidance about diet, supplements, exercise, medication, or treatment—guidance based not on the current practice of lumping symptoms together into broad categories of disorders, but on a precise reading of your own body’s peculiarities and its status in real time.
“And at that point,” says Larry, in a typically bold pronouncement that would startle generations of white-coated researchers, “you now have, for the first time in history, a scientific basis for medicine.”