Nanoscientists at Australia’s Monash University recently studied the physics of flying pizza dough. The data will be used to inform the development of tiny nanomtors. From Physorg:
Advanced dough tossers can perform multiple tosses (tossing the dough repeatedly before it rests in the chef’s hands). In multiple tossing, the scientists found that the optimal motion is a semi-elliptical trajectory, in which the disk flies through the air at an angle rather than flying perfectly flat. Multiple tossing is more complex, as it risks entering chaotic and chattering regimes, emphasizing the disk’s sensitive dependence on initial conditions. Generally, dough tossers use the helical motion for the first toss, and change to a semi-elliptical motion for subsequent tosses.
As the scientists explain, multiple tossing shares similarities with standing wave ultrasonic motors, since both convert reciprocal input into continuous rotational motion using the same mechanism. The electric motors operate by using friction from the ultrasonic vibration of a stator to spin a rotor. Engineers who design these motors generally give the stator an elliptical motion, in accordance with the findings from the researchers’ pizza tossing analysis. However, the researchers found that the reason for the preferred elliptical motion is different than motor engineers have assumed. This insight and further investigation might help designers improve the operation of the motors in new ways.
“The Physics of Pizza Tossing” (Physorg, via Smithsonian)
“The Behavior of Bouncing Disks and Pizza Tossing” (EPL)