A new generation of semi-autonomous robots has been built at Georgia Tech, robots whose control systems are built atop of clusters of rat brain-cells.
In Dr. Potter’s hybrid system, the layer of rat neurons is grown over an array of electrodes that pick up the neurons’ electrical activity. A computer analyzes the activity of the several thousand brain cells in real time to detect spikes produced by neurons firing near an electrode.
A silver three-wheeled model of the robot is commercially available through the Swiss robotics maker K-Team (www.k-team.com) for about $3,000 and is about the size of a hockey puck. It trundles along at a top speed of one meter per second.
“We assign a direction of movement, say, a step forward, that is automatically triggered by a pattern of spikes,” said Thomas DeMarse, a former member of Dr. Potter’s group who is an assistant professor in the department of biomedical engineering at the University of Florida. “Twenty of these patterns, for instance, means 20 rotations of the wheel.”